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The method of the nonlinear Langevin equation is generalized to ordinary mixed 
and to chemically reacting gases. The stochastic Boltzmann equations of these 
gases, the fluctuating hydrodynamic equations of mixed gases, and the Langevin 
equations for the number density of each component of a reaction-diffusion system 
are obtained. 
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1. I N T R O D U C T I O N  

Studies on fluctuations in chemically reacting systems are impor tant  for 
clarifying the mechanism of  appearance o f  "dissipative structures. ,,~1) Since 
chemically reacting systems are in principle described by the Bol tzmann 
equat ion so long as they are dilute, t2) the fluctuations may  also be described as 
those o f  the Bol tzmann equation, t3) On the basis of  this idea Nicolis derived a 
multivariate master  equat ion that  is in principle complete. However,  it is so 
complex that  no one has analyzed it. Instead, some approximate  equations 
based on more  or  less phenomenological  arguments,  such as the nonlinear 
master  equation,  t4) have been discussed, ts) 

The problem of  fluctuations o f  the Bol tzmann equat ion o f  ordinary (not 
chemically reacting) mixed gases has also been an impor tan t  subject for study 
since the pioneering work  o f  Fox  and Uhlenbeck)  6'7) Clearly, the two 
problems are very similar. Malek-Mansour  et al. ~8~ tried to apply the method 
of  stochastic analysis developed for the problem o f  chemically reacting 
systems to the other  problem. This work  shows the similarity mos t  clearly. 

This work was supported financially by the Alexander von Humboldt Foundation. The main part 
of the paper was written during the author's stay at the Max-Planck Institut fiir 
Festk6rperforschung (Stuttgart) as a Humboldt fellow. 
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The method of the nonlinear Langevin equation has recently led to some 
success with regard to the problem of fluctuations of  ordinary gases. (9) 
Langevin-like equations for each of the particles that constitute a fluid are so 
constructed that they give the same expectation values of physical quantities 
as the master equation (1~ gives, and then a stochastic equation of the one 
particle distribution is derived from them. This is just the Boltzmann equation 
equipped with a term of the Langevin fluctuating force. The fluctuating 
hydrodynamic equations of Landau and Lifshitz (11) are also derivable from 
this stochastic Boltzmann equation by a direct application of the Chapman-  
Enskog expansion. "2'~3) This method may be expected to be applicable to 
chemically reacting systems. 

This paper aims at presenting a theory of the stochastic Boltzmann 
equation of chemically reacting systems and a theory of hydrodynamic 
fluctuations in these systems. These theories include as special cases those of 
fluctuations in ordinary mixed gases at the kinetic and at the hydrodynamic 
stages.(1~ 

The fluctuations of the diffusion velocity, or the thermal current, are 
shown to be characterized by the diffusion, or the thermodiffusion, coef- 
ficients [see Eqs. (70) and (72)]. 

A set of Langevin equations for the number density of each component in 
a reaction~tiffusion system is obtained [-see Eqs. (114)]. The problem of the 
fluctuations of these systems is reduced to that of solving the set of the 
Langevin equations. 

After this paper was submitted, the author learned of other work on 
hydrodynamic fluctuations associated with diffusion and chemical 
reactions. (14-z~ In the author's opinion, those works are sufficiently different 
from the present work so as to make publication of this paper worthwhile. 

2. MASTER EQUATION 

The Boltzmann equation is derived from the master equation (I~ 

g 
r f (v l ,v2  .... ,Vs, t) 

2 ( ( {  V~r(u , vj, u Yjt)f(vl ..... vi',..., vj', .... VN, t) 
(i j )  d d  

- W(v/, vj, vi, vj)f(v 1 .... , vi ..... vj ..... v s, t)} dv i' dvf (1) 

When chemical reactions occur, Eq. (1) is modified. For  simplicity, we 
consider in this section a binary reaction 

A + B ~ C + D (2) 
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This reaction may be considered as a collision of two particles, say i and j, in 
which the " s ta te"  of  the ith or thej th  particle changes from A to C, or B to D, 
respectively. Accordingly, each particle is specified not only by the velocity v, 
but also by the state e. For  reaction (2), this variable may take four values A, 
B, C, and D. Equation (1) is extended to the form 

X { W(vi,  v j, vi', v~'; ~ o~j, o~i t, o~j') 
t • f ( v l ,  cq ..... v/, ~it,..., Vjt~ O~j .... , VN, O~N, t) 

- W(v i ' ,  v j ,  vi, v j; ~', ~j', ~i, ~j) 

• ..... v ~ , ~  ..... v j , ~ j  .. . . .  v ~ , ~ , t ) }  (3)  

When the system is not homogeneous, the space variable r should be 
attached and we have 

L ~t f ( a l ,  a2 .. . . .  aN, t) + ~ Vi 0 i ~ri f ( a l  ' " "  aN, t) 

= ~ { W ( a l ,  a j ,  ai', a j ' ) f ( a l  ... . .  ai', .... aj,..., a N, t) 
(i j) 

- W ( a { ,  aj ' ,  a i, a ) f ( a l  ... . .  a i , . . . ,  aj  . . . . .  a N, t)} dai'  d a /  (4) 

where the following notations are used: 

a i = ( r i ,  vi, o~i), f d a i = ~  f d r i  f d v  (5) 

So long as the system is dilute, we may consider each particle as a point and 
may assume that collisions are local events: 

W ( a , ,  a i ,  ai', aj ' )  = 6(ri - r ) 3 ( r / -  r/')J(rj - rj') 

)< W(Vi, V j,  Yi" y jr; O~i, O~j, O~i' , O~j t) (6) 

The function W = W(v~, v j, v/, v j ;  ~i, ~j, ~(, ~j') describes all the kinds of  
binary collisions. Among them, we may distinguish the elastic and the inelastic 
collisions, 

W = W~X+ W in~l (7) 

We] = (~tl~Ztll~t~2~t2 W(V1 , V2' u V2'; ~XI, a2, ~1', ~2") 

= ~,~,~6~2~,~W~,=,(vl, v2, v ( ,  v2') (8) 
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When the inelastic collisions are absent, Eq. (4) gives the master equation of 
mixed gases. 

Equation (4) is the fundamental assumption of this paper. The relation of 
Eq. (4) to the Boltzmann equation is simple. On the assumption of  molecular 
chaos 

f ( a l ,  a2 .... , a N, t) = ]-I J~,l)(ri, vi, t) (9) 
i 

Eq. (4) gives 

- -  v ~ fm( r  t) 0 f~l)(r , v , t ) +  Or . . . .  v, 
0t 

! r ! t r • {W(v, v, ,  v v~ ; ~, ~1, ~,  ~ / ) f2~ ( r ,  v ,  0 f 2  ~ (r, v l ,  t) 

- w(v' ,  v~ v, v~ ; ~', ~ ' ,  ~, ~hf~l~(r, v, 0 f 2  ~ (r, v~, t)} (10) 

Equation (10) reduces to the Boltzmann equation of Ross and Mazur r when 
the system is homogeneous. 

3. STOCHASTIC  B O L T Z M A N N  EQUATION 

The stochastic process that is described by the Fokker-Planck equation 
may also be described by the Langevin equation (see, e.g., Ref. 21). This 
theorem is formally extended in previous papers ~ to the case of the master 
equation 

f Ot f ( a )  = { W ( a ,  a ' ) f ( a ' )  - W(a ' ,  a ) f ( a ) }  da' (11) 

We may construct the Langevin equations 

d 
dt  a(t) = ~l(a(t))  + R(t)  (12) 

d a"(t) ~ ( ; ) a " - k ( t ) ~ k ( a ( t ) ) + R . ( t ) ,  n =  2,3 .... (13) 
dt k= 1 , 

that are stochastically equivalent to Eq. (11). In Eq. (13), Ctk(a ) is the kth 
derivate moment of the transition probability and R,( t )  is a random force. ~ 
Further, when the distribution 

9(x,  t) = 6(x  -- a(t)) (14) 
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is introduced, Eqs. (12) and (13) may be simply expressed by 

g( , t) = It(x, x')g(x', t) dx' + r(x, t) 

where 

k(x, x') = W(x,  x') - 6(x - x') f V/(x", x) dx" 

through the relations 

a"(t) = ~x"a(x,  t) dx, 
3 

R.( t )  = f x"r(x ,  t) dx ,  

467 

(15) 

(16) 

The higher order correlation functions of r(x,  t) have similar expressions to 
Eq. (19), since r(x,  t) is a Poisson-like process. When Eq. (11) is multivariate, a 
= {a l ,  a2 .... , aN}, the following replacements should be done: 

N 

g ( x ,  t) --~ g ( X l ,  X 2 .. . . .  XN, t) = H •(Xi -- ai( t ) )  
i = 1  

f f f  6(x  -- y )  --~ [-I 6(xl - Yi), da --~ ".. dal  daz "" daN, 
i = 1  

[-Detailed derivations of Eqs. (12)-(20) are given in Ref. 9.] 
Now, we may apply this theorem to Eq. (4). We have 

0 g(X 1 ..... XN, t) + ~ Vl ~ (~5 " ~rl g ( x l  ... . .  Xu ,  t) 

. . . .  dx l  "'" dxN' k(xa ..... xN, x l  ..... xN ) 

• g (xx ' ,  .... XN') + r (x t  ..... XN, t) 

(20) 

etc. 

(21) 

r(x, 0 = 0 (18) 

6(t  - s) t t ' d Z l  dz  2 [6(x - z l )  - 3 (x  - z2) ] r(x~ Or(Y, S) 

• [,6(y - Zl)  - 6 ( y  - z 2 ) ] W ( z l ,  zz)g(z2, t) (19) 

The expectation values of the random force are given as follows: 

R(t)  = Rx(t ) (17) 
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where 

k( ' ') X ,  ~..., XN~ X 1 , . . . ,  X N 

= E n ( X i '  X j ,  Xi' , X jr) H 
(ij) k r i,j 

6(xk - xk') 

Hiroshi Ueyama 

- y~ { W ( x .  x j, x / ,  x / )  - 6(xi - x/)6(x~ - x ; )  
(i j) 

• f f dxi" d x f  W(xi"' x / '  x~' xj)} ~ f(xk - (22) 

Because of the factorization property of Eq. (20), we may reduce Eq. (21) to 

gi(x, t) + v gi(x, t) = ~ fl(x, xt  , x', x l')gi(x', t) 

• 9j(Xl', t) dxl dx' dx 1' + ri(x, t) (23) 

where 

9i(x, t) = 6(x - ai(t)) 

r ~ ( x , O = f ' " f d X l ' " d X N 6 ( X - x 3 r ( x ~  ..... x ,v , t )  

For the one-particle distribution 

9(x,  t) = Z g,(x, t) 
i 

we have 

where 

ca x vca c5( , t) + ~r 9(x ,  t) 

= f ' " f t a ( x , x , , x ' , x l ' ) ~ ( x ' , t ) ~ ( x l ' , O + ~ ( x , t )  

~(x, t) = E r,(x, t) 
i 

Going back to the concrete notation, 

if(x, t) = g(r, v, t) 

(24) 

(25) 

(26) 

(27) 

(28) 
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we may rewrite Eq. (27) as 

~[g,( r ,  v, t)] -= ~ + v c~ r- g~(r, v, t) = J,({9=}) + G( r, v, t) (29) 

that is, the stochastic Boltzmann equation. By this reduction of variables, Eq. 
(19) reduces to 

G(r, v, t)ra(r', v', t') = 2n23(t - t')6(r - r')[6w, 3,,a] (30) 

where n = n(r) is the total number density of the gas, 

'~v. = 6 w ( v l ,  ~ , )  = ,~(v - v l ) , ~ ,  

and the inner product of  two functions is defined as follows: 

[0,  W]=(1/4n 2) ~, ~"" (dv  1 d% dye' dv 2' A[O]A[q ~] 
d .3 

• W(vl, v2, vl', v2'; ~1, ~2, ~1', ~2')g,;(r, Vx', t)g~(r, v2', t) (31) 

A[O] = O(vl, ~1) + O(v2, "2) - @(vl', "1') - O(v2', ~2') (32) 

Equations (29) and (30) are the conclusions of this section. Equation (29) 
is similar in form to Eq. (10), but is free from the assumption of molecular 
chaos. It is stochastically equivalent to the master equation. 

4. FLUCTUATIONS IN MIXED GASES 
We are going to analyze the stochastic Boltzmann equation [Eq. (29)]. In 

this section, we consider the case in which chemical reactions are absent. The 
transition probability is given by Eq. (8). 

The arbitrary one-particle quantity 

W, = E W(r~(t), v,(t), ~,(t)) = E ( ( d r  dv Ud(r, t) (33) v,  
i Jd 

obeys 

where 

~[W] = ~ f"" f dr dv dvl dv' dv,'Ud(r, v, 7) 
ap 

• { W~p(v, v 1 , v', v 1')9~(r, v', t)gp(r, v 1', t) 

- W=p(v', v~', v, vl)a=(r, v, t)g•(r, vl, t)} + Rv(t) 

R.(t) = ~ f f dr d~ W(r, v, ~)r~(r, v, t) 

(34) 

(35) 
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By the method of change of variables, . (v, c() ~ (Vl, ~), Eq. (34) changes to 

ff 9 [ + ]  = 5 2 .-- dr a~ a~l ~,' ~1' a[+]6~,~,~ 6~2~ ~ 

x w ~ ( v ,  v~, v', v~')g~(r, v', 0g~(r, v / ,  f) + R+(0 (36) 

where A[~]  is defined by Eq. (32). 
Accordingly, both the collision and the random force terms vanish for 

conserved quantities �9 because of the identity 

k[/~tl(u -~ ~J~t2(u - -  kt/ctl(u ) - -  kI't~2(V2' ) ~--- O (37) 

We may say that the random force term vanishes when its correlation 
functions vanish. Then, the local equilibrium distribution 

F~(r, C, t) = n,(r)(fl~/Tz) 3/2 exp(-fl~C 2) (38) 

where 

~ = m j 2 k T ,  C = v - u(r) (39) 

is a stationary solution of Eq. (34). We may follow the theory of the 
Chapman-Enskog expansion. We use the notations of Waldmann (13) in the 
following. 

Putting 

we obtain 

g,(r, v, t) = F,(r, C, t){1 + qb(r, C, t)} 

where 

(40) 

~[F~] = - ~  n~na~C~t~[(b ] + r~(r, v, t) (41) 

n,nJ~[r 
• { ~ , ( r ,  v, t) + *a(r ,  v l ,  t) - * , ( r ,  v', t) - Oa(r, vl ' ,  t))  

• W=p(v, vl ,  v', v, ')F=(r, v', t)F,(r ,  vt ' ,  t) (42) 
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In this approximation Eq. (30) reduces to 

re(r, v, t)ra(r', v', t') 

= 26(t t')b(r , 2 - - r )n [6~, (~v'fl]F ~ 26(t - t')6(r - r') 

I t ' d v  dv 1 6(v - v l )g~n~ ,n~J  [@~] (43) X 

~1~2 , ) d  

Notice that our definition of the inner product [-, �9 IF is identical to that of 
Waldmann."  s) 

The solvability condition of Eq. (41) gives the hydrodynamical equations 
of the number density n, the fractional number density 7. = njn,  the 
temperature T, etc. : 

0 
~ n  + ~ n w .  = 0 

OXtz 

8u u 8u. _ 3pu ~ 
P { t  + pu~ ~Xv ~x~ 

t J. n Ox. 

(44) 

(45) 

n~W.~ (46) 

where 

5 /dT \  @ 8 q(.) Ou. 
5 k T ~ ) .  - dt 8x. - (p"~ - PS"O ~ (47) 

w u = u  u + -  C u F~(r,C,t) dC (48) 
n 

d t  - ~ + w. ~ (49) 
w GXp 

The pressure tensor p.~, the diffusion velocity Wu~, and the heat current q ~  
are given as follows: 

pu~-~ ~ m~ f CuC~F~q)~dC (50) 

fc( ) J "\n, * " -  n ~F,*~ de (51) 

q(.")~- ~ C 2 - ~ k T CuF=O. dC (52) 
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Because the collision operator is linear, the solution of Eq. (41) is given by 

�9 ~ = ~ '  + %" (53) 

where 

~ [ F J  = - ~  n~n~J~p[~'] (54) 
r 

- ~  %npJ=r + G(r, v, t) = 0 (55) 

Corresponding to the decomposition of Eq. (53), we have 
i t !  ! I t  

Pu~ = P.~ + P.~, W.. = W;= + W~, q~) = q~}*) + q',',(*) (56) 

The solution of Eq. (54) and the resulting expressions for the hy- 
drodynamical variables are well known, (13) 

where 

t p.~ = p6u~ - 2q@u~,/c?x.> 

W'u~ = - ~ D~Bdu~ - Dr~(OT/T axu) (57) 

q~*) = - P  Z DT, du~ - 2' OT/~x u 

d~= = ~?~IOx u + ( ~  - p~lp)(@/p Qxu) 

The transport coefficients are given (13) by 

rl = (k TIl O)[ Bfi< CuC~>, Bfl< CuC~) ]F (58) 

D=~ = (1/3n)[A(')Cu, A(o)Cu] r (59) 

Dr= = ( l l3n)[AC. ,  A(=)Cu]F (60) 

2' = �89 ACu] v (61) 

The functions A, A (), B are defined as the solutions of the following integral 
equations: 

~ y j ~ j [ ( A ~ k ' - ~ 7 , A ( ' ) ) C u ] = F i ( 6 1 k - 1 )  (62) 
j L \  rti \ ~;i 

7J4j[AC.] = F, (f l ,C 2 _ ~)C. (63) 
j Ri 



Fluctuating Hydrodynamic Equations 473 

~, 7j~[Bfl<CuC~>] = 2 F~ fli<CuC,> (64) 
j n i  

The second part  of  the right-hand side of  Eq. (56) is now given as follows: 

_ k Tn ~.. fn,nj j[Bf<C.C >]r 

_ kT~n . fBifli<C~C.>ri(r,v,t) dv (65) 

where Eqs. (50), (53), and (64) have been used. Similarly, we have 

1 Z fAT)C.",(r,v,O a~ (66) WL= n2. 

q~(W) __ kT f A.C.r.(r. ,,, (67) 

Since Eqs. (65)-(67) are linear functionals of  {r~(r, v, t)}, Eq. (17) yields 

Pu, = 'W~, = q~(.) = 0 (68) 

Finally, with the aid of  Eqs. (43), (58)-(61), and (65)-(68), we obtain the 
following results: 

p~(r ,  t)p~,~,(r', t') = 2 q k T 6 ( r  - r ')J(t - t') 

x (6u.,6~, + 6..,6~., (69) 

W~',(r, t)W~',,,(r', t ') = (2/n)D~,,6uu,6(r - r')6(t - t') (70) 

t )q  u, (r ,  t') = - - (71) 22 k T  6uu,6(r r')6(t t') 

WA',(r, t)q~!')(r, t') = 2 O r ,  kTJuu,J(r  - r')6(t - t') (72) 

Equations (69)-(72), together with Eqs. (56) and (68), are the conclusions 
of  this section. Equat ion (69) is the well-known expression of  Landau  and 
Lifshitz (~2) and Eqs. (70)-(72) are the generalizations to mult icomponent  
fluids. 
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5. 
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C H E M I C A L L Y  R E A C T I N G  F L U I D S  

Now we consider Eq. (29) in the case of chemical reactions 

~ [ g , ( r ,  v, t) ]  = ye ' ( {ga}  ) + jinel({ff/~}) _]_ r~(r, v, t) (73) 

Even in this case, almost all the collisions are elastic. Inelastic collisions occur 
seldomly, Accordingly, the zeroth-order approximate solution of Eq. (73) is 
the local equilibrium distribution as before, and the first-order solution is also 
given by Eq. (40). Because of  the inelastic collisions, Eq. (41) is to be modified 
a s  

for 

~l-F~l -~ - S  F/aF/fl'J6~fl [(l~l At- ~<~el({Ffl} ) -[- r~(r, v, t) 

The solvability condition of Eq. (74) 

f dY  ~/a(v) {~ [ -F j  - ~-~el({~fl}) _ r~(r, u t)} = 0 

(74) 

(75) 

2 (76) ~=(v) = 6~p, m,v~u (p = x,  y,  z), and gm~v~ 

gives the set of hydrodynamic equations. The first one of (76) with Eq. (75) 
gives 

0t //inel = E (n=,na,K~p=,~, - n~naK~,a,~a) + R=(r, t) (77) 

where 

f f ! t, t K~,,~ . . . . .  W'"~ v l ,  v ,  vl  , ~, ~,  ~ , Y)  

x F,,(v')Fp,(vl' ) dv 1 dr' dvl'/n~,n p, (78) 

R~(r, t) = fr~(r ,  v, t)dv (79) 

The correlation function of the random force is calculated with the use of Eq. 
(30) as 

R~(r, t)Ra(r', t') = �89 - r ' ) 6 ( / -  t') 

x ~ K~ . . . .  ,~,n~,n~,A(6~)7~(3~) (80) 
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where 

Combined  with the contr ibut ion o f  the elastic collisions, Eq. (77) gives 

_ ( 7 7 , ,  

When the thermodiffusion coefficients D ~  are negligibly small, Eqs. (77') 
and (57) form a set o f  closed equations,  which we may  rewrite as one equation, 

( 8 7 ~  l y  8 n ,D,p 8 
at/w = n ~. ax. ~ y~ 

flfl'~' 

1 8 
+ R~(r, t) - n ~ ~ n~,W;,'r (82) 

Equat ion  (82) is a simple result. The last two terms are r andom forces and 
the other terms give just  the deterministic equat ion o f  the react ion-diffusion 
system. The two contr ibut ions o f  the total r a n d o m  force are mututal ly 
independent  

R,(r, t)W;'~(r', t') = 0 (83) 

since r a n d o m  forces due to different mechanisms are independent  in general, 2 
as we can see f rom Eq. (18). 

6. TRIMOLECULAR AND UNIMOLECULAR REACTIONS 

F r o m  the viewpoint o f  the format ion  of  dissipative structure, tri- 
molecular  reactions o f  the form 

2X + Y ~ 3X 

are important .  (1'5'21) We must  generalize Eq. (3) so that  it includes processes 
o f  three-particle scattering. 

2 If the transision probability is composed of contributions of different mechanisms W(x, y) 
= ~.i W(i)( x, Y), we may write 

r(x, t) = ~ r(~ t) 
i 

t)rUl(y, s) = 6(t - s)alj f f dzl dz2 [6(x - zl) - 6(x - z2) ] r(i)(x,  

• [6(y - q)  - a(y - z2)] W(~ z2)g(z2, t) 

since this set of equations reproduces Eq. (18). 
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These processes are characterized by the form of  transition probability 

W(vi, v j, vk, v/, v:', vk'; ~/, ~j, c< k, ~i', ~xf, 0(k') (84) 

We may easily generalize the formulation of  Section 3 to this case by only 
replacing Eq. (22) by 

k(x,, x2 ..... xN') = Y, n ( x i ,  xj, x~, x/, x/,  xD ~ 6(x, - x/) (85) 
( i jk)  I ~ i , j , k  

Then, the contribution of the three-particle processes to the stochastic 
Boltzmann equation is found to be 

] l  ff go(r, v, t) = - ~ '" dv 2 dv 3 dr' dv 2' dv 3' 
tri 2 ~2~3ct,ct~:t~ 

• { W(v, v2, v3, v', v2', v3'; ~, ~2, ~3, ~', ~2', ~3') 

x g,,(r, v', t)g~(r, v2', t)g,~(r, v3', t) 

--  W(u  v2' ,  v3' ,  v, u u ; ~ t  (x2, ' 53, , 0~, 0(2, 0(3) 

• g,(r, v, t)g,2(r, v2, t)9,~(r, v3, t)} + r,(r, v, t) (86) 

A rather complicated calculation similar to the derivation of  Eq. (30) yields 

G(r, v, t)G,(r', v', t') 

= ~6(r - r')6(t - t') 

x y, ffa~la~2a~3,~,'a~2'av3'a3G~3a3[6,,~,3 
~ 1 a2oc3&'la~2Gt~ 

X m ( u  u v3,  v l ' ,  v2' ,  v3 ' ;  0(1, 0(2, ~ 0(1', 0(2', (z3 t) 

x g~,~(r, Vx', t)9,~(r, v2', t)9~(r, Va', t) (87) 

where 

- c~(v - v l ' ) c ~  - 6(v - v2 ' )c~  - 6(v - v3 ' )c~  (88) 

Equations (86) and (87) give the general expressions for the three-particle 
processes. We may suppose that  almost all the collisions are two-particle 
elastic collisions as before, and that  three-particle collisions are inelastic and 
seldom. Accordingly, we may substitute the local equilibrium distribution 
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into 9o of  Eq. (86) and obtain 

- K~,~,~,~ ..... n~n,~n,~) + R,(r, t) 

R~(r, t)Rp(r', t') -- �89 - r')6(t - t') 

X 2 A3(6,)A3(6~) K~ ...... ,~,,~=,~n=;n~,~n~ 
~1 ""r 

where 
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(89) 

(90) 

where 

v,t)]~,i = ~ f dv' [W(v' v'; c~' c()9''(r' v'' t) 

- W(v', v; ~', ~)g=(r, v, t)] + r~(r, v, t) 

g g  
G(r, v, t)rp(r', v', t') = 6(r -- r')6(t - t') ~ ] t d v l  dv 1' 

dd 
x [6 (v  - v ~ ) ~  - ,~(v - v ~ ' ) 6 = ~ ; ]  

x [ 6 ( r  - v ~ ' ) 6 ~  - ~(v '  - v l ' ) ~ j  

X W(V 1 ,Vlt;  61, O~l')ff~,~(r , Vl, , t)  

(94) 

(95)  

Equation (89) gives the correction of  Eq. (77) due to three-particle processes. 
The reaction of the form 

A ~ X (93) 

is a unimolecular process. It is characterized by another form of the transition 
probability 

W ( v i ,  v / ;  61, 6i ')  

The contribution of this process to the stochastic Boltzmann equation is 
found to be 

K~ . . . . . .  ~,~,~ = 5_ "'" d v l " " d v s  W ( v l  ..... v3 , ~ 1 , - . . ,  6 3 ' )  

x F~i(r, vt' , t)F~(r, v2', t)F~5(r, v3', t)/n=in~,~n~5 (92) 
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By substituting the local equilibrium distribution into Eq. (94), we obtain the 
following results 

~t/u,i  = ~ ( K ,  ano - Ka=n=) + R~(r, t) (96) 

R=(r, t)Ra(r', t') = 6(r - r ')f(t - t') 

x y" ( 6 ~  - 6 ~ , ~ ) ( 6 ~  - 6=,;)K~,~n=,~ (97) 

7. EXAMPLE 

We consider now the fluctuations of the Brusselator, (~'4) 

A--,  X (a), 2X + Y--~ 3X (b) 
(99) 

B + X ~ Y + D  (c), X - ~ E  (d) 

The transition probability of this system is composed of the contributions of 
the four kinds of reactions and of the elastic collisions. The number densities 
of the spaces A, B, D, and E are assumed homogeneous and time independent 
and only X = n x and Y = nv are the variables of this system. 

For each kind of reaction, we may apply the results of the preceding 
sections separately. We obtain the following results: 

K~} ) = k l  only if a = X ,  f l = A  (100) 

R(xa)(r, t)R~)(r ', t ' ) =  k l A f ( r  - r')b(t - t') (101) 

K~= b~ ... .  ~a,a2a3=k2 only i f e l = e 2 = e 3 = X ,  f l l = f l 2 = X ,  f13= Y 
(102) 

R~)(r, t)R~)(r ', t') = R~)(r, t)R~)(r ', t') = - R~)(r, t)R~)(r ', t') 

= k 2 X  2 Y f ( r  - r')f(t - t') (103) 

Notice that in Eq. (102) "only i f . . . "  means " i f  . . . .  or the sets {~i} and {/3i} 
are permutations o f . . .  and zero otherwise." 

)r~e(c)2/h/~2 -= k 3 only if gl = Y, ~2 = D, fix = B, Bz = X (104) 
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R~)(r, t)R~)(r ', t') = R~)(r, t)R~)(r ', t') = -R~)(r ,  t)R~)(r ', t') 

= k 3 B X 3 ( r  - r')3(t - t') (105) 

k,p ~ = k  4 only if ~ = E ,  f l = X  (106) 

R~)(r, t)R~)(r ', t') = k4X6( r  - r')6(t - t') (107) 

The elastic collisions cause diffusion. Among the many diffusion 
coefficients D,a,  only the three Dxx , Dvv , and Dxy = Dvx appear explicitly in 
the diffusion equations. We may  introduce another  set of  coefficients 

D = - D x y ,  D 1 = 7x(Dxx - D x y ) ,  D 2 = ~ y ( D y y  - -  Dxy ) (108) 

and for simplicity assume them to be constants. I f  the mutual  diffusions 
between the X (or Y) and the A (or B, D, E) components  are negligible, the 
system may  be considered as a two-component  system, for which a simple 
relation 

D = D 1 --= D 2 (109) 

holds. 
On the condit ion that the total number  density n is a constant  and there is 

no net flow of  masses (w = 0), Eq. (46) reduces to 

53 ~ X = D 1 V 2 X  + R~)(r, t) (l 10) 

- -  Y =  D 2 V Z Y  + R~)(r, t) (111) 
Ot 

where 

R~e)(r, t) = - ~ n ~ W T ,  ~, ~ = X, Y (112) 

Then, Eq. (70) gives 

R~e)(r, t)R~e)(r ', t') = 2 D~a ~ ~ c~ n~(r, t)n~(r', t')6(r - r')6(t - t') (113) 
n ~ ~x~ 0x. '  

When all the contributions in the above are taken into account, Eq. (82) 
yields 

0 
- -  X = k l A  + k 2 ~ (  2 Y - k 3 B X  - k 4 X  + Dx  V 2 X  + R x 
~t 

(114) 
0 
~t  Y = k 3 B X  - k e X 2  Y + Dz  V 2 Y + R v  
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where 

Rx(r, t)Rx(r' ,  t') = [ k l A  + k4X + keX 2 Y + k 3 B X  + 2D V V ' X Y / n  

+ 2(O1 - D) V V ' X l f ( r  - r ')6(t - t') 

Rv(r, t)Rv(r ' ,  t') = [ k z X 2 Y  + k 3 B X  + 2D V V ' X Y / n  (115) 

+ 2(D 2 - D) VV' Y]b(r - r ')b(t - t') 

Rx(r, t)Rv(r ' ,  t ') = - I-k2 X2 Y + k 3 B X  + 2D V V ' X Y / n ] f ( r  - r ' ) f ( t  - t ' )  

Since the r a n d o m  forces in the hydrodynamica l  approx ima t ion  are 
Gauss ian ,  (9) we may  write them as sums of  the white noise fields {~i(r, t ) ; i  

= 1 ..... n}. We assume 

~i(r, t)r t') = 6ii~(r - r ' ) f ( t  - t') (116) 

and 

R~(r, t) = ~ a~fi(r ,  t) (117) 
i 

and determine the coefficients a=i so that  Eq. (117) is consistent with Eqs. 
(115). The  results are as follows 

Crxl = 6y l  = (k2 X2 Y + k 3 B X )  lie 

O'X2 = ( k l A  + k 4 X )  1/2, O'y2 = 0 

ax3 . = - av3" = (~3/~xu)(2DXY/n) 1/2 (118) 

ax4u = (O/Oxu)[2(D1 - D)X/n]  1/2, a v ,  u = 0 

trx5 . =.0,  try5 . = (~3/Oxu)[2(D z - D ) Y / n ]  1/2, # = x, y, z; n = 11 

Equat ions  (114) together  with Eqs. (118) are the final results o f  this 
section. The set (114) has a simple structure:  Its determinist ic par t  is just  the 
kinetic equat ion  of  the Prigogine school. (1'4) The Langevin fluctuating forces 
characterized by Eqs. (118) describe the f luctuations of  the Brusselator.  

In the course of  the derivat ion of  Eqs. (114) and  (118), no approx imat ions  
have been used except for the hydrodynamica l  one of  Eq. (40). This 
approx ima t ion  is usually valid, since chemical  reactions are p h e n o m e n a  near  
local equil ibrium, (3) even if they are far f rom absolute  equil ibrium. 

8. C O N C L U D I N G  R E M A R K S  

The main results of this paper are the fluctuating hydrodynamic 
equations of mixed gases in Section 4 and the Langevin equations of 
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chemically reacting fluids, an example of which is given in Eqs. (114). This is 
still a rather complicated set of equations: Besides the nonlinearity of the 
deterministic part, the correlation function of the random force depends on 
the variables, as Eqsl (118) show. Yet, Eqs. (114) enable us to analyze the 
fluctuations in a way parallel to the analyses of the deterministic part. For 
example, small fluctuations from a steady state (X o, Yo) may be studied by 
putting X = X o + x, Y = Yo + Y in Eqs. (114), and X = X0, Y = Yo in Eqs. 
(118). The resulting linear Langevin equation may be easily solved with the aid 
of the linear stability theory. ~1'4) 

Hydrodynamic fluctuations are also important in many other pheno- 
mena. They are studied in the case of convection instability31'z3'24) Of the 
various methods developed in that Case, the method of Graham (2~) based on 
the Landau-Lifshitz equation seems directly applicable to the case of Eqs. 
(114). A detailed analysis of Eqs. (114) will be given elsewhere. 
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